2015년 11월 19일 목요일

Geomechanics



지반공학을 위한 수치해석, 정말 쉽게 한번 접근해 보자.

한번은 들어봤지만 한번에 알수가 없는 지반탄성체에 대해 요점정리 해본다.



Mathematical Preliminaries: 기본 수학


Tensor (in Euclidian Space)

  • ( a,b ) = scalar                   = integer, potential
  • ( a,b ) = 1st order tensor    = 3x1 matrix vector :  3 components
  • ( A,B ) = 2nd order tensor  = 3x3 matrix            :  9 components
  • ( A,B ) = 3rd order tensor  = 3x3x3 matrix        : 27 components
  • A,B ) = 4rd order tensor  = 3x3x3x3 matrix    : 81 components

Product
  • inner product                     = · v = c     : projection, eg) (1,0,0) · (0,1,0) = 0+0+0
  • vector (cross) product       = u x v = w   : area,          eg) (1,0,0) x (0,1,0) = (0,0,1)
  • triple scalar (box) product = (u x v) · w  : volume
  • tensor product (dyad)       = u v = U  or  A ⊗ B = D
  • trace                                 = tr(U) = tr(u ⊗ v) = · v
  • dot product                       = A · B = C = Aik Bkj
  • double contraction            = A : B = D = Aij Bij

Del: Nabla operator (∇)
  • gradient:      ∇ p     = u = ( dp/dx, dp/dy, dp/dz )
  • divergence: ∇ · u   = a = du/dx + du/dy + du/dz
  • curl:             ∇ x u  = v = [ (du3/dy - du2/dz), (du1/dz - du3/dx), (du2/dx - du1/dy) ]
  • Laplacian:    ·∇ p  = d2p/dx2 + d2p/dy2 + d2p/dz2
    • Divergence of Gradient (p), 즉 2차 미분된 scalar 값
  • Hessian:     H(p) = J(u) = J(∇ p)
    • Jacobian of Gradient (p), 이건 2차 미분된 tensor 값


Divergence theorem (Gauss's theorem): 부피 변화는 전체 면적 flux 변화량 합이다.





Stoke's theorem: Cauchy's fomula 의 근간. 점에서의 값은 그 점 주변 둘러싼 닫힌 곡선 위에서 적분한 것과 같다??




Kinematic


가장 기본은 운동 (혹은 변형) 의 기술방법을 구별해 생각하는 일.
  • Lagrangian Description (X) : Material coordinates: 물체 따라 같이 움직이는 기술방법
  • Eulerian Description (x) : Spatial coordinates: 고정된 관찰자로서의 기술방법

Deformation gradient tensor (F)
  • dx = F dX
  • F = R U = Rotation tensor x Stretch tensor (symmetric)
  • C = F' F : Right Cauchy-Green = Material deformation tensor
  • B = F F' : Left Cauchy-Green = Finger tensor = Spatial deformation tensor
  • E = 1/2 (C-I)       : Green (Lagrangian) strain tensor
  • e = 1/2 (I - invB) : Almansi (Eulerian) strain tensor
  • 하지만 결국 Cauchy's infinitesimal strain tensor = 1/2 * (u_j,i + u_i,j)

이게 왜 필요한가?


구조물 모니터링에서 우리가 얻을 수 있는것은 시간에 따른 좌표값 뿐.
그에 따른 displacement 와 strain 을 갖고 stress state 를 제대로 판단해야 파괴 예측 가능.




Stress


Cauchy stresses
  • T(n) = s_ji * n_j = (3x1) = (3x3)*(3x1)
    • T(n) : traction vector
    • s : Cauchy (true) stress tensor
    • angle between T(n) & n_j = inv( cos( T· n / |T||n| ) )
  • Moment of equilibrium (about x3-axis) : s12 = s21 --> symmetric


Principal stresses (주응력)
  • Mohr's circle
  • Eigenvalue : det (s -lamda * d_ij) = 0 <--  어렵게만 배우던 고유값의 실제 사용예
  • Invariants (I1, I2, I3) : - s^3 + I1*s^2 - I2*s + I3 = 0

Stress-Deviation tensor
  • stress tensor = hydrostatic stress tensor (s_m) + deviator stress tensor (s')
  • s'_ij = s_ij - s_m * I
    • s_m = 1/3 * trace(s)
    • I = identity matrix
  • It is very important in describing the plastic behavior.
  • 주의 : triaxial test 에서 보통 쓰던 deviator stress = s1 - s3 랑은 또 조금 다름.
  • 주의 : s' 의 Invariants = (J1, J2, J3) 로 (I1, I2, I3) 와 다름. J1 = 항상 0.

Constitutive Equations (구성방정식) : s_ij = C_ijkl * e_kl
  • C_ijkl = 4th order tensor : 3^4 = 81 elements
    • s = C e, where C : stiffness tensor
    • e = S s, where S : compliance tensor
  • Symmetrization : 81 - 3*9 - 3*6 = 36 elements
    • Thus, anisotrophy constitutive equation : [s] (6x1) = [C] (6x6) * [e] (6x1)
  • Isotrophiy constitutive equation : s_ij = lamda * e_kk * d_ij + 2 * mu * e_ij
    • s_11 = lamda*(e_11+e_22+e_22) + 2mu*e_11
    • Thus, [C] (6x6) = [ [lamda+2mu, lamda, lamda, 0, 0, 0] ...
  • These can be transformed with ( K, E, v, G (=mu) ) in engineering.
  • 추가 : Compatibility conditions = No gaps or overlaps during deformation.
  • 즉, 적합방정식은 복잡해보여도 결국은 3차원 Strain 들의 관계식.

한마디로 결론은?


수치해석에서 등방성 탄성체를 가정했다면, Hooke's Law 는 딱 두 문자로 표현된다.
바로 Lame's parameters : lamda 와 mu .
복잡하게 Young's modulus (E), Poisson's ratio (v), bulk modulus (K), shear modulus (G) 로도 표현되곤 하는데, 결국은 똑같은거다. 더 배우고 싶다면 구조방에서...... ㅡ.ㅡㅋ




Failure Criteria (4 classic models)



Brittle material : Elasticity
  • 1st. Mohr-Coulomb theory : t = c + s * tan(phi) 
    • t : shear strength
    • c : cohesion
    • s : normal stress
    • phi : angle of internal friction.

Ductile material : Plasticity

Beyond the elastic range yield occurs, Elastic and Plastic deformations are assumed to happen concurrently (Total strain e = eElastic + ePlastic) . Plasticity describes the deformation of a material undergoing non-reversible changes of shape in response to applied forces.



소성변형 들어가기에 앞서서..



  1. EPP model : Elastic Perfectly Plastic model = no work hardening.
  2. 그간 써오던 total accumulated strain 대신, increments in strain 을 사용한다. (loading, unloading 으로 인한 stress-strain 관계가 더이상 1:1 대응이 안되기 때문)
  3. Principal plastic strain increments (d ePlastic) 와 principal deviator stress (s') 는 비례
  4. Flow rule : plastic stress-strain law (between d ePlastic & Cauchy stress (s))
  5. Prandtl-Reuss equations : full elastic-plastic stress-strain relations (w/ Hooke's law)



  • 2nd. Tresca yield criterion
    • Yield occurs when s1 - s3 reaches k (= direct shear strength).
    • This assumes s2 has no effect.
    • Tresca's criterion is more conservative than von Mises's.

  • 3rd. von Mises yield criterion ( called J2-plasticity or J2 flow theory )
    • Yield occurs : 2nd invariant of deviator stress tensor (J2) reaches k^2.
      • von Mises 응력 : 각 지점에서의 비틀림에너지 (max. distortion E) 나타냄.
      • J2 = 1/6 * [(s_xx-s_yy)^2 +...] + s_xy^2 +... = 1/2 * s'_ij * s'_ij
      • material yield strength (k) = direct shear strength
    • 식으로 쓰면 f = J2 - k^2 = 1/2 * (s'_ij)^2 - k^2
      • f = 0 : yield
      • f < 0 : elastic
      • f > 0 : not possible
    • All components of shear stress contribute to yield.

  • 4th. Drucker-Prager yield criterion
    • Pressure-dependent model (for plastic deformation of soils)
    • sqrt(J2) = A + B * I1
      • I1 : 1st invariant of Cauchy stress = 3*mean stress(s_m)
      • J2 : 2nd deviator stress invariant
      • A & B from experiments


추가 : Hyper-elastic = Green elastic

s_ij = B_ij + C_ijkl * e_kl

where, B_ij : components of initial stress tensor = storing of past Energy
아쉽게도 모든 지반 탄성체는 B_ij 가 당연히 존재함.



그리하여 


지반의 불균질 & 비등방성으로 인해, 복잡하지만 탄소성변형을 알아야 함.







댓글 없음:

댓글 쓰기